SYNTHESIS OF EITHER THE GERMACRANE OR THE CADINANE CARBON SKELETON FROM A SINGLE PHOTOADDUCT

Gordon L. Lange^{*} and F. Clare McCarthy

Guelph-Waterloo Centre for Graduate Work in Chemistry

Department of Chemistry, University of Guelph, Guelph, Ontario, N1G2W1, Canada

The anti-tumor activity of a number of germacranolides has sparked interest in developing approaches to the synthesis of these sesquiterpenes. Two groups have described have described have described thermolysis sequence for the preparation of 1,5-cyclodecadienes, the ring system present in most of these natural products. The sequence involved photoaddition of a 2-cyclohexenone to a substituted cyclobutene to give a strained tricyclo [4.4.0.0², 5] decane which upon thermolysis yielded a cis,trans-1,5-cyclodecadiene. In this letter we report the synthesis from a single photoadduct, of optically active dienes possessing either the germacrane or the cadinane carbon skeleton.

Irradiation of (-)-piperitone (1), 4 [α] $_{D}^{20}$ -44° (lit. 5 -51°), and an excess of cyclobutene-carboxylic acid (2) in benzene with a 350-nm source gave adduct 3, 6 mp 134.0-135.5°, which upon esterification with diazomethane gave in 52% overall yield 7 keto ester 4: 8 mp 58-60°; [α] $_{D}^{20}$ +130°. Sodium borohydride reduction (3 hrs., 0°) of 4 gave in 50% yield 7 the γ -lactone 5: mp 78-80°; [α] $_{D}^{20}$ +90°; ir (CC1 $_{4}$) 1770 cm $_{}^{-1}$; nmr (CC1 $_{4}$) δ 4.58 (1H, d, J=9 Hz), 1.1-2.9 (12H, m), 1.25 (3H, s), 1.00 (6H, m). Thermolysis of 5 in refluxing decane (bp 174°) for 4 hrs. gave in 73% yield 7 a dihydroisoaristolactone 9 6a: mp 85-87°; [α] $_{D}^{20}$ -192°; ir (CC1 $_{4}$) 1770, 1660 cm $_{}^{-1}$; nmr (CC1 $_{4}$) δ 7.19 (1H, br. s), 5.0-5.3 (2H, m), 1.61 (3H, s), 1.1-2.6 (10H, m), 1.08 (6H, m); uv max (EtOH) 217.5 nm (ϵ 8800) and strong end absorption. The cis,trans configuration of the diene was anticipated as a result of previous investigations. 2 , 3 This assignment was also supported by comparison of the nmr spectrum of 6 a with that of isoaristolactone (6 b), 9 particularly the chemical shift of the vinyl methyl group (δ 1.61 in 6 a and 1.59 in 6 b 10). The sequence described illustrates the utility of this approach in the synthesis of sesquiterpenes with the germacrane skeleton.

Thermolysis of $\frac{4}{2}$ in refluxing decane for 10 hrs. gave in quantitative yield 1 the diene $\frac{8}{2}$: $[\alpha]_D^{20}$ -193°; ir (CC1₄) 3620, 3090, 1725, 1655, 900 cm⁻¹; nmr (CC1₄) δ 7.25 (1H, br. s), 4.98 (1H, br. s), 4.71 (1H, br. s), 3.79 (3H, s), 1.4-2.6 (11H, m), 1.35 (1H, s, disappears on addition of D₂0), 0.94 (6H, d, J=7 Hz); uv max (EtOH) 213 nm (ϵ 7200). We suggest that the initially formed diene $\underline{7}^{12}$ is further transformed to $\underline{8}$ via a transannular ene type reaction 3 as indicated. Molecular models reveal that the six atoms involved are ideally situated for such a transformation. Thus, thermolysis of $\underline{4}$ provides a novel entry into the cadinane family of sesquiterpenes.

$$\frac{3}{4}, R = H$$

$$\frac{1}{2}$$

$$\frac{6a}{6b}, R = -\frac{CH(CH_3)_2}{CH_3}$$

$$\frac{3}{4}, R = H$$

$$\frac{3}{4}, R = Me$$

References and Notes

- 1. E. Rodriquez, G. H. N. Towers, and J. C. Mitchell, Phytochemistry, 15, 1573 (1976).
- 2. G. L. Lange, M.-A. Huggins, and E. Neidert, Tetrahedron Letters, 4409 (1976).
- 3. P. A. Wender and J. C. Lechleiter, J. Am. Chem. Soc., 99, 267 (1977).
- 4. All structures depict absolute configurations. For absolute configuration of (-)-piperitone see: W. Klyne and J. Buckingham, "Atlas of Stereochemistry," Chapman & Hall, London, 1974, p 78.
- 5. "Handbook of Chemistry and Physics," Chemical Rubber Co., Cleveland, Ohio, 1976, p C443.
- 6. All new compounds gave spectral and analytical data consistent with their structures.
- 7. This product was purified by prep. tlc using silica gel GF-254 and 1% ethyl acetate/chloroform.
- Racemic 4, mp 61-62°, was recently prepared by photoaddition of (±) piperitone to methyl cyclobutenecarboxylate: P. A. Wender and J. C. Lechleiter, J. Am. Chem. Soc., 100, 4321 (1978).
- 9. M. Martin-Smith, P. de Mayo, S. J. Smith, J. B. Stenlake, and W. D. Williams, Tetrahedron Letters, 2391 (1964) and references cited therein.
- 10. In aristolactone⁹ this double bond has the <u>trans</u> or \underline{E} configuration and the resonance for the methyl group appears at δ 1.48.
- 11. The crude product exhibited only one spot on tlc analysis and the nmr spectrum of this crude product was essentially the same as that of a sample purified by prep. tlc.
- 12. See reference 2 for an analogous thermolysis.
- 13. For related ene type reactions see: E. G. Scovell and J. K. Sutherland, Chem. Commun., 529 (1978) and references cited therein.
- 14. The authors acknowledge the financial assistance of the National Research Council of Canada.

(Received in USA 7 September 1978)